Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives
نویسندگان
چکیده
منابع مشابه
An efficient differential quadrature method for fractional advection-diffusion equation
Abstract Using a set of modified cubic trigonometric B-splines as test functions, a new differential quadrature technique is proposed for the 1D and 2D transient advection-diffusion equations of order α ∈ (0, 1]. The weighted coefficients are determined via solving the system of algebraic equations with a strictly diagonally dominant tri-diagonal matrix. Then, the original equation is converted...
متن کاملFractional Hamilton formalism within Caputo ’ s derivative
In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملA numerical evaluation and regularization of Caputo fractional derivatives
Numerical evaluations of Caputo fractional derivatives for scattered noisy data is an important problem in scientific research and practical applications. Fractional derivatives have been applied recently to the numerical solution of problems in fluid and continuum mechanics. The Caputo fractional derivative of order α is given as follows f (t) = 1 Γ(1− α) ∫ t 0 f (s) (t− s)α ds, 0 < α < 1 The ...
متن کاملOn q–fractional derivatives of Riemann–Liouville and Caputo type
Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2016
ISSN: 1687-8140,1687-8140
DOI: 10.1177/1687814016683305